模拟退火
模拟退火是一种通用概率算法,常用来在一定时间内寻找在一个很大搜寻空间中的近似最优解。和爬山算法相比,模拟退火算法以一定的概率接受不好的迭代,从而跳出局部最优。
下面我们尝试使用模拟退火算法来解决上篇文章中的几个问题:
问题1: 离散空间优化问题
我们使用以下程序进行求解:
#!/usr/bin/python3
import random
import math
def neighbor(last, T, t):
"""
returns a neighbor
"""
# compute used time
time = lambda cur: sum([cur[i] * t[i] for i in range(M)])
while True:
res = [i for i in last]
idx = random.randint(0, len(last) - 1)
res[idx] = 1 - res[idx]
if time(res) <= T:
return res
def solve(T, M, t, m):
# compute the value got
value = lambda cur: sum([cur[i] * m[i] for i in range(M)])
# temperature setting
cur_tmp = 100
tmp_fin = 0.01
# valid init solution
ans = [0, 0, 0]
val = value(ans)
while cur_tmp > tmp_fin:
# get a neighbor
next = neighbor(ans, T, t)
next_value = value(next)
diff = next_value - val
r = random.random()
if next_value > val or r < math.exp(-abs(diff) / cur_tmp):
ans = next
val = next_value
# update the temperature
cur_tmp = cur_tmp * 0.999
print(ans)
if __name__ == "__main__":
T = 70
M = 3
t = [71, 69, 1]
m = [100, 1, 2]
solve(T, M, t, m)
输出结果:
[0, 1, 1]
问题2: 连续空间多变量多约束非线性规划问题
我们使用以下程序进行求解:
#!/usr/bin/python3
import random
import math
def constrain(x):
"""
check the constraint
"""
for i in x:
if i > 6 or i < -6 or i > 10 or i < -10:
return False
if -x[0] * x[1] > 10:
return False
if 1.5 + x[0] * x[1] - x[0] - x[1] > 0:
return False
return True
def neighbor(x):
"""
returns a neighbor
"""
while True:
res = [i for i in x]
r1 = random.random()
idx = 0
if r1 > 0.5:
idx = 1
r2 = random.random()
sign = 1
if r2 > 0.5:
sign = -1
r3 = random.random()
res[idx] = res[idx] + sign * r3
if constrain(res):
return res
def func(x):
"""
the target function
"""
return math.exp(
x[0]) * (4 * x[0]**2 + 2 * x[1]**2 + 4 * x[0] * x[1] + 2 * x[1] + 1)
def solve():
# temperature setting
cur_tmp = 100
tmp_fin = 0.01
# valid init solution
ans = [0, 5]
val = func(ans)
while cur_tmp > tmp_fin:
# get a neighbor
next = neighbor(ans)
next_value = func(next)
diff = next_value - val
r = random.random()
if next_value < val or r < math.exp(-abs(diff) / cur_tmp):
ans = next
val = next_value
# update the temperature
cur_tmp = cur_tmp * 0.999
print(ans)
print(func(ans))
if __name__ == "__main__":
solve()
输出结果:
[-5.976946429765198, 1.5103517825203914]
0.2926414515330139
用相同的初始值,模拟退火算法得到了更好的结果。
问题3: 连续空间最值问题
我们使用以下程序进行求解:
#!/usr/bin/python3
import random
import math
def func(x):
"""
the target function
"""
return -200 * math.exp(-0.05 * x[0]) * math.sin(x[0])
def constrain(x):
"""
check the constraint
"""
return x[0] >= -2 and x[0] <= 2
def neighbor(x):
"""
returns a neighbor
"""
while True:
res = [i for i in x]
r1 = random.random()
sign = 1
if r1 > 0.5:
sign = -1
r2 = random.random()
res[0] = res[0] + sign * r2
if constrain(res):
return res
def solve():
# temperature setting
cur_tmp = 100
tmp_fin = 0.01
# valid init solution
ans = [0]
val = func(ans)
while cur_tmp > tmp_fin:
# get a neighbor
next = neighbor(ans)
next_value = func(next)
diff = next_value - val
r = random.random()
if next_value < val or r < math.exp(-abs(diff) / cur_tmp):
ans = next
val = next_value
# update the temperature
cur_tmp = cur_tmp * 0.999
print(ans)
print(func(ans))
if __name__ == "__main__":
solve()
输出结果:
[1.530673326410524]
-185.11524120724246
参考文献
- https://zh.wikipedia.org/wiki/%E6%A8%A1%E6%8B%9F%E9%80%80%E7%81%AB
- https://en.wikipedia.org/wiki/Simulated_annealing