最长递增子序列

最长递增子序列(Longest Increasing Subsequence, LIS)属于最基本也是最经典的动态规划问题,下面我们将以一道LeetCode上面的题目对这个问题进行解析和求解。

leetcode 300: Longest Increasing Subsequence

Given an integer array nums, return the length of the longest strictly increasing subsequence.

A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].

Example 1: Input: nums = [10,9,2,5,3,7,101,18] Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Example 2: Input: nums = [0,1,0,3,2,3] Output: 4

Example 3: Input: nums = [7,7,7,7,7,7,7] Output: 1

Constraints: 1 <= nums.length <= 2500 -104 <= nums[i] <= 104

Follow up:

一种符合直觉的算法是$O(n^2)$的算法,这也是会被大多数ACMer所鄙视的一种算法。我们可以使用一个数组data来表示以每个数字结尾的最长LIS的大小,即data[i]表示以nums[i]结尾的最长的LIS的长度。在计算nums[i]对应的data[i]的时候,我们只需要遍历每一个在i前面的数字nums[j],如果nums[j] < nums[i], 那么就把nums[i]可以放在nums[j]的任意LIS后面,并把这个LIS的长度加1,从而可以以此更新nums[i]对应的data[i]. 具体代码如下所示:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> data(nums.size(), 1);
        int res = nums.empty() ? 0 : 1;
        for (int i = 1; i < nums.size(); ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    data[i] = max(data[i], data[j] + 1);
                }
            }
            res = max(res, data[i]);
        }
        
        return res;
    }
};

为了获得一个$O(n log(n))$的算法,我们可以对上面的算法进行优化,即对7-11行的查找过程进行优化,实现$O(logn)$的查找。不过,下面我们给出另外一个不同思路的算法。在这个算法中,我们不是直接去构造LIS,而是维护一个数据结构data,data[i]表示对于长度为$i+1$的LIS,其结尾的数字最小可以是多少。让我们先看一下算法实现:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> data;
        for (int i : nums) {
            auto pos = lower_bound(data.begin(), data.end(), i);
            if (pos == data.end()) {
                data.push_back(i);
            } else {
                if (*pos > i) {
                    *pos = i;
                }
            }
        }
        
        return data.size();
    }
};

请注意最终的data并不是一个LIS,但是data的长度却表示可以构造的最长的LIS。下面我们以[10,9,2,5,3,7,101,18]为例进行推演一下:

  1. i = 10, data = [], pos = 0 -> data = [10]
  2. i = 9, data = [10], pos = 0 -> data = [9]
  3. i = 2, data = [9], pos = 0 -> data = [2]
  4. i = 5, data = [2], pos = 1 -> data = [2, 5]
  5. i = 3, data = [2, 5], pos = 1 -> data = [2, 3]
  6. i = 7, data = [2, 3], pos = 2 -> data = [2, 3, 7]
  7. i = 101, data = [2, 3, 7], pos = 3 -> data = [2, 3, 7, 101]
  8. i = 18, data = [2, 3, 7, 101], pos = 3 -> data = [2, 3, 7, 18]

两种典型的更新体现在第5步和第7步:第5步的更新使得LIS的结尾数字更小;第7步的更新加长LIS