最长公共子序列(Longest Common Subsequence, LCS)属于最基本也是最经典的动态规划问题,下面我们将以一道LeetCode上面的题目对这个问题进行解析和求解。
leetcode 1143: Longest Common Subsequence
Given two strings text1 and text2, return the length of their longest common subsequence.
A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, “ace” is a > subsequence of “abcde” while “aec” is not). A common subsequence of two strings is a subsequence that is common to both strings.
If there is no common subsequence, return 0.
Example 1:
Input: text1 = “abcde”, text2 = “ace”
Output: 3
Explanation: The longest common subsequence is “ace” and its length is 3.Example 2:
Input: text1 = “abc”, text2 = “abc”
Output: 3
Explanation: The longest common subsequence is “abc” and its length is 3.Example 3:
Input: text1 = “abc”, text2 = “def”
Output: 0
Explanation: There is no such common subsequence, so the result is 0.Constraints:
1 <= text1.length <= 1000
1 <= text2.length <= 1000The input strings consist of lowercase English characters only.
这个题目比较好理解,我们首先建立一个二维的data数组,data数组中的每一个元素data[i][j]表示text1中的前i个字符和text2中的前j个字符的最长公共子序列的个数。那么对于data[i][j]我们有以下的递推关系:
- 如果text1[i-1]和text[j-1]相同,那么data[i][j] = data[i-1][j-1] + 1
- 如果text1[i-1]和text[j-1]不相同,那么data[i][j] = max(data[i-1][j], data[i][j-1])
具体的代码如下所示:
1 | class Solution { |